Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Neurophysiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748407

RESUMO

The apolipoprotein (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often co-present with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenge. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. Additionally, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.

2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464274

RESUMO

Metabolism plays an important role in the maintenance of vigilance states (e.g. wake, NREM, and REM). Brain lactate fluctuations are a biomarker of sleep. Increased interstitial fluid (ISF) lactate levels are necessary for arousal and wake-associated behaviors, while decreased ISF lactate is required for sleep. ATP-sensitive potassium (K ATP ) channels couple glucose-lactate metabolism with neuronal excitability. Therefore, we explored how deletion of neuronal K ATP channel activity (Kir6.2-/- mice) affected the relationship between glycolytic flux, neuronal activity, and sleep/wake homeostasis. Kir6.2-/- mice shunt glucose towards glycolysis, reduce neurotransmitter synthesis, dampen cortical EEG activity, and decrease arousal. Kir6.2-/- mice spent more time awake at the onset of the light period due to altered ISF lactate dynamics. Together, we show that Kir6.2-K ATP channels act as metabolic sensors to gate arousal by maintaining the metabolic stability of each vigilance state and providing the metabolic flexibility to transition between states. Highlights: Glycolytic flux is necessary for neurotransmitter synthesis. In its absence, neuronal activity is compromised causing changes in arousal and vigilance states despite sufficient energy availability. With Kir6.2-K ATP channel deficiency, the ability to both maintain and shift between different vigilance states is compromised due to changes in glucose utilization. Kir6.2-K ATP channels are metabolic sensors under circadian control that gate arousal and sleep/wake transitions.

3.
Front Physiol ; 14: 1302695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074327

RESUMO

Introduction: Apolipoprotein E (ApoE) has been shown to be necessary for proper skeletal muscle regeneration. Consistent with this finding, single-cell RNA-sequencing analyses of skeletal muscle stem cells (MuSCs) revealed that Apoe is a top marker of quiescent MuSCs that is downregulated upon activation. The purpose of this study was to determine if muscle regeneration is altered in mice which harbor one of the three common human ApoE isoforms, referred to as ApoE2, E3 and E4. Methods: Histomorphometric analyses were employed to assess muscle regeneration in ApoE2, E3, and E4 mice after 14 days of recovery from barium chloride-induced muscle damage in vivo, and primary MuSCs were isolated to assess proliferation and differentiation of ApoE2, E3, and E4 MuSCs in vitro. Results: There was no difference in the basal skeletal muscle phenotype of ApoE isoforms as evaluated by section area, myofiber cross-sectional area (CSA), and myonuclear and MuSC abundance per fiber. Although there were no differences in fiber-type frequency in the soleus, Type IIa relative frequency was significantly lower in plantaris muscles of ApoE4 mice compared to ApoE3. Moreover, ApoE isoform did not influence muscle regeneration as assessed by fiber frequency, fiber CSA, and myonuclear and MuSC abundance. Finally, there were no differences in the proliferative capacity or myogenic differentiation potential of MuSCs between any ApoE isoform. Discussion: Collectively, these data indicate nominal effects of ApoE isoform on the ability of skeletal muscle to regenerate following injury or the in vitro MuSC phenotype.

4.
Sci Rep ; 13(1): 16855, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803069

RESUMO

Mounting evidence highlights the crucial role of aging in the pathogenesis of Alzheimer's disease (AD). We have previously explored human apoE-targeted replacement mice across different ages and identified distinct molecular pathways driven by aging. However, the specific contribution of different brain cell types to the gene modules underlying these pathways remained elusive. To bridge this knowledge gap, we employed a computational deconvolution approach to examine cell-type-specific gene expression profiles in major brain cell types, including astrocytes (AS), microglia (MG), oligodendroglia (OG), neurons (NEU), and vascular cells (VC). Our findings revealed that immune module genes were predominantly expressed in MG, OG, and VC. The lipid metabolism module genes were primarily expressed in AS, MG, and OG. The mitochondria module genes showed prominent expression in VC, and the synapse module genes were primarily expressed in NEU and VC. Furthermore, we identified intra- and inter-cell-type interactions among these module genes and validated their aging-associated expression changes using published single cell studies. Our study dissected bulk brain transcriptomics data at the cellular level, providing a closer examination of the cell-type contributions to the molecular pathways driven by aging.


Assuntos
Doença de Alzheimer , Transcriptoma , Camundongos , Humanos , Animais , Perfilação da Expressão Gênica , Doença de Alzheimer/metabolismo , Envelhecimento/genética , Encéfalo/metabolismo
5.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609198

RESUMO

Background: Inflammatory cells within atherosclerotic lesions secrete various proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. The relative contributions of specific proteases to atherogenesis is not well understood. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We have previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as an endogenous modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. Methods: We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis was examined using mouse models. Results: HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo , HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after systemic administration to Apoe -/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr -/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. Conclusions: These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.

6.
Infect Immun ; 91(9): e0025123, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37594272

RESUMO

Apolipoprotein E (ApoE) is a lipid transport protein that is hypothesized to suppress proinflammatory cytokine production, particularly after stimulation with Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). Studies using transgenic ApoE human replacement mice (APOE) expressing one of three different allelic variants suggest that there is a hierarchy in terms of responsiveness to proinflammatory stimuli such as APOE4/E4 > APOE3/E3 > APOE2/E2. In this study, we test the hypothesis that APOE genotype can also predict susceptibility to infection with the facultative intracellular gram-positive bacterium Listeria monocytogenes. We found that bone-marrow-derived macrophages isolated from aged APOE4/E4 mice expressed elevated levels of nitric oxide synthase 2 and were highly resistant to in vitro infection with L. monocytogenes compared to APOE3/E3 and APOE2/E2 mice. However, we did not find statistically significant differences in cytokine or chemokine output from either macrophages or whole splenocytes isolated from APOE2/E2, APOE3/E3, or APOE4/E4 mice following L. monocytogenes infection. In vivo, overall susceptibility to foodborne listeriosis also did not differ by APOE genotype in either young (2 mo old) or aged (15 mo old) C57BL/6 mice. However, we observed a sex-dependent susceptibility to infection in aged APOE2/E2 male mice and a sex-dependent resistance to infection in aged APOE4/E4 male mice that was not present in female mice. Thus, these results suggest that APOE genotype does not play an important role in innate resistance to infection with L. monocytogenes but may be linked to sex-dependent changes that occur during immune senescence.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Feminino , Humanos , Masculino , Camundongos , Apolipoproteína E2 , Apolipoproteína E3 , Apolipoproteína E4 , Apolipoproteínas E/genética , Citocinas , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
ACS Nano ; 17(13): 12862-12874, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37341451

RESUMO

Unraveling the transport of drugs and nanocarriers in cerebrovascular networks is important for pharmacokinetic and hemodynamic studies but is challenging due to the complexity of sensing individual particles within the circulatory system of a live animal. Here, we demonstrate that a DNA-stabilized silver nanocluster (DNA-Ag16NC) that emits in the first near-infrared window upon two-photon excitation in the second NIR window can be used for multiphoton in vivo fluorescence correlation spectroscopy for the measurement of cerebral blood flow rates in live mice with high spatial and temporal resolution. To ensure bright and stable emission during in vivo experiments, we loaded DNA-Ag16NCs into liposomes, which served the dual purposes of concentrating the fluorescent label and protecting it from degradation. DNA-Ag16NC-loaded liposomes enabled the quantification of cerebral blood flow velocities within individual vessels of a living mouse.


Assuntos
DNA , Lipossomos , Animais , Camundongos , DNA/química , Corantes , Espectrometria de Fluorescência , Circulação Cerebrovascular , Corantes Fluorescentes/química
8.
Cell Rep ; 42(3): 112196, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871219

RESUMO

The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge. E4 microglia display increased Hif1α expression and a disrupted tricarboxylic acid (TCA) cycle and are inherently pro-glycolytic, while spatial transcriptomics and mass spectrometry imaging highlight an E4-specific response to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, our findings emphasize a central role for APOE in regulating microglial immunometabolism and provide valuable, interactive resources for discovery and validation research.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Humanos , Microglia/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/metabolismo , Neuroglia/metabolismo , Encéfalo/metabolismo , Proteínas Amiloidogênicas/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Apolipoproteína E3/metabolismo
9.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798317

RESUMO

Apolipoprotein E4 (APOE4) is the strongest risk allele associated with the development of late onset Alzheimer's disease (AD). Across the CNS, astrocytes are the predominant expressor of APOE while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional inflammation and metabolic processes, yet insights into the molecular constituents driving these responses remain unclear. Utilizing complementary approaches across humanized APOE mice and isogenic human iPSC astrocytes, we demonstrate that ApoE4 alters the astrocyte immunometabolic response to pro-inflammatory stimuli. Our findings show that ApoE4-expressing astrocytes acquire distinct transcriptional repertoires at single-cell and spatially-resolved domains, which are driven in-part by preferential utilization of the cRel transcription factor. Further, inhibiting cRel translocation in ApoE4 astrocytes abrogates inflammatory-induced glycolytic shifts and in tandem mitigates production of multiple pro-inflammatory cytokines. Altogether, our findings elucidate novel cellular underpinnings by which ApoE4 drives maladaptive immunometabolic responses of astrocytes.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38194340

RESUMO

BACKGROUND: In this study, we aimed to describe a case series of revision first metatarsophalangeal joint fusion with a three-dimensional (3-D)-printed implant for osseous deficits of the first metatarsophalangeal joint. Bone defects of the first ray are a common problem in foot and ankle surgery. Etiologies include nonunion, avascular necrosis, osteomyelitis, failed first metatarsophalangeal joint implant arthroplasty, and failed hemijoint resection arthroplasty. Treatment options include acute shortening, block allograft, block autograft, distraction osteogenesis, vascularized free fibula, Masquelet technique, and partial first-ray amputation. Three-dimensional printing provides an opportunity to improve outcomes, with less donor site morbidity and less extensive recovery time than an external fixation device. It has been used in other facets of foot and ankle surgery with encouraging results. METHODS: Three patients (four feet) underwent revision first metatarsophalangeal joint fusion with a 3-D-printed implant. Reasons for revision included avascular necrosis after distal metatarsal osteotomy in one patient and bone deficit after failed first metatarsophalangeal joint implant in two patients. RESULTS: All patients had a minimum follow up of 12 months. Two patients had painful hardware and had to undergo revision due to implant design. At most recent follow up all patients were pain free with improved pain scores. CONCLUSIONS: In revisional first metatarsophalangeal joint surgery with osseous deficits, the goal is to restore length and alignment, which improves function of the medial column. Custom 3-D-printed implants for first metatarsophalangeal joint revision can provide an opportunity for improved outcomes and healing.


Assuntos
Artrodese , Articulação Metatarsofalângica , Humanos , Articulação Metatarsofalângica/diagnóstico por imagem , Articulação Metatarsofalângica/cirurgia , Artroplastia , Osteotomia , Necrose
11.
Alzheimers Dement ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479795

RESUMO

Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.

13.
Nature ; 603(7902): 661-666, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296863

RESUMO

Competitive interactions have a vital role in the ecology of most animal species1-3 and powerfully influence the behaviour of groups4,5. To succeed, individuals must exert effort based on not only the resources available but also the social rank and behaviour of other group members2,6,7. The single-cellular mechanisms that precisely drive competitive interactions or the behaviour of social groups, however, remain poorly understood. Here we developed a naturalistic group paradigm in which large cohorts of mice competitively foraged for food as we wirelessly tracked neuronal activities across thousands of unique interactions. By following the collective behaviour of the groups, we found neurons in the anterior cingulate that adaptively represented the social rank of the animals in relation to others. Although social rank was closely behaviourally linked to success, these cells disambiguated the relative rank of the mice from their competitive behaviour, and incorporated information about the resources available, the environment, and past success of the mice to influence their decisions. Using multiclass models, we show how these neurons tracked other individuals within the group and accurately predicted upcoming success. Using neuromodulation techniques, we also show how the neurons conditionally influenced competitive effort-increasing the effort of the animals only when they were more dominant to their groupmates and decreasing it when they were subordinate-effects that were not observed in other frontal lobe areas. Together, these findings reveal cingulate neurons that serve to adaptively drive competitive interactions and a putative process that could intermediate the social and economic behaviour of groups.


Assuntos
Comportamento Competitivo , Ecologia , Animais , Comportamento Competitivo/fisiologia , Alimentos , Giro do Cíngulo/fisiologia , Camundongos , Neurônios/fisiologia , Comportamento Social
14.
Sci Rep ; 12(1): 1906, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115575

RESUMO

Apolipoprotein E (APOE) alleles impact pathogenesis and risk for multiple human diseases, making them primary targets for disease treatment and prevention. Previously, we and others reported an association between APOE alleles and the gut microbiome. Here, we evaluated effects of APOE heterozygosity and tested whether these overall results extended to mice maintained under ideal conditions for microbiome analyses. To model human APOE alleles, this study used APOE targeted replacement (TR) mice on a C57Bl/6 background. To minimize genetic drift, homozygous APOE3 mice were crossed to homozygous APOE2 or homozygous APOE4 mice prior to the study, and the resulting heterozygous progeny crossed further to generate the study mice. To maximize environmental homogeneity, mice with mixed genotypes were housed together and used bedding from the cages was mixed and added back as a portion of new bedding. Fecal samples were obtained from mice at 3-, 5- and 7-months of age, and microbiota analyzed by 16S ribosomal RNA gene amplicon sequencing. Linear discriminant analysis of effect size (LefSe) identified taxa associated with APOE status, depicted as cladograms to show phylogenetic relatedness. The influence of APOE status was tested on alpha-diversity (Shannon H index) and beta-diversity (principal coordinate analyses and PERMANOVA). Individual taxa associated with APOE status were identified by classical univariate analysis. Whether findings in the APOE mice were replicated in humans was evaluated by using published microbiome genome wide association data. Cladograms revealed robust differences with APOE in male mice and limited differences in female mice. The richness and evenness (alpha-diversity) and microbial community composition (beta-diversity) of the fecal microbiome was robustly associated with APOE status in male but not female mice. Classical univariate analysis revealed individual taxa that were significantly increased or decreased with APOE, illustrating a stepwise APOE2-APOE3-APOE4 pattern of association with heterozygous animals trending as intermediate in the stepwise pattern. The relative abundance of bacteria from the class Clostridia, order Clostridiales, family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of Erysipelotrichia increased with APOE4 status, a finding that extended to humans. In this study, wherein mice were maintained in an ideal fashion for microbiome studies, gut microbiome profiles were strongly and significantly associated with APOE status in male APOE-TR mice. Erysipelotrichia are increased with APOE4 in both mice and humans. APOE allelic effects appeared generally intermediate in heterozygous animals. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on disease-relevant phenotypes, will be necessary to determine if alterations in the gut microbiome represent a novel mechanism whereby APOE alleles impact disease.


Assuntos
Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Animais , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Bactérias/genética , Disbiose , Fezes/microbiologia , Feminino , Genes Dominantes , Genes Recessivos , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fenótipo , Ribotipagem , Fatores Sexuais
15.
J Cereb Blood Flow Metab ; 42(5): 771-787, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35023380

RESUMO

Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer's disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Demência Vascular , Hiper-Homocisteinemia , Alelos , Doença de Alzheimer/genética , Animais , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Demência Vascular/genética , Dieta , Feminino , Técnicas de Introdução de Genes , Genótipo , Humanos , Hiper-Homocisteinemia/genética , Inflamação/genética , Masculino , Camundongos
16.
Shock ; 57(1): 151-159, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482320

RESUMO

ABSTRACT: Despite the known deleterious effects of obesity, clinical data indicate that overweight or obese patients experience higher rates of sepsis survival compared to normal and underweight patients; a phenomenon called the obesity paradox. Results from preclinical sepsis studies have not been able to replicate these findings. The objective of this study was to test the existence of the obesity paradox in a murine model of cecal slurry (CS)-induced sepsis with insulin-resistant diet-induced obese mice. Male C57BL/6 mice were provided high-fat (HFD) or low-fat (LFD) diets for 20 weeks. HFD-fed mice experienced higher rates of survival compared to LFD-fed mice after septic challenge induced by CS injection (66% vs. 25%, P = 0.01, survival assessed for 14 days). Despite the survival advantage, HFD-fed mice had higher rates of positive bacterial cultures and increased markers of kidney injury. Circulating levels of IL-6, IL-1ß, TNFα, and IL-23 were equivalent 24 h after CS-injection; however, IL-17A was uniquely increased in HFD-fed mice. While LFD-fed mice maintained euglycemia, HFD-fed mice were hyperglycemic 6 and 12 h after CS-injection. Stable isotope resolved metabolomics analysis of liver tissue showed diverging pathways of glucose utilization during sepsis, with LFD-fed mice significantly upregulating glycolytic activity and HFD-fed mice decreasing glucose entry into the TCA cycle. This murine study corroborates clinical data that obesity confers a survival benefit in sepsis, albeit at the expense of more significant organ injury. The mechanisms promoting survival in the obese remain unknown; however, this model appears to be well-poised to begin answering this question. Differences in glucose utilization are a novel target to investigate this paradox.


Assuntos
Camundongos Obesos , Sepse/mortalidade , Injúria Renal Aguda/sangue , Animais , Citocinas/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Interleucinas/sangue , Camundongos Endogâmicos C57BL , Sepse/sangue , Fator de Necrose Tumoral alfa/sangue
17.
Alzheimers Dement ; 18(10): 1721-1735, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34908231

RESUMO

N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.


Assuntos
Doença de Alzheimer , Glicômica , Humanos , Glicômica/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/metabolismo , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Glucose/metabolismo
18.
J Alzheimers Dis ; 85(4): 1481-1494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958025

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive age-dependent disorder whose risk is affected by genetic factors. Better models for investigating early effects of risk factors such as apolipoprotein E (APOE) genotype are needed. OBJECTIVE: To determine whether APOE genotype produces neuropathologies in an AD-susceptible neural system, we compared effects of human APOE ɛ3 (E3) and APOE ɛ4 (E4) alleles on the mouse olfactory epithelium. METHODS: RNA-Seq using the STAR aligner and DESeq2, immunohistochemistry for activated caspase-3 and phosphorylated histone H3, glucose uptake after oral gavage of 2-[1,2-3H (N)]-deoxy-D-glucose, and Seahorse Mito Stress tests on dissociated olfactory mucosal cells. RESULTS: E3 and E4 olfactory mucosae show 121 differentially abundant mRNAs at age 6 months. These do not indicate differences in cell type proportions, but effects on 17 odorant receptor mRNAs suggest small differences in tissue development. Ten oxidoreductases mRNAs important for cellular metabolism and mitochondria are less abundant in E4 olfactory mucosae but this does not translate into differences in cellular respiration. E4 olfactory mucosae show lower glucose uptake, characteristic of AD susceptibility and consistent with greater expression of the glucose-sensitive gene, Asns. Olfactory sensory neuron apoptosis is unaffected at age 6 months but is greater in E4 mice at 10 months. CONCLUSION: Effects of human APOE alleles on mouse olfactory epithelium phenotype are apparent in early adulthood, and neuronal loss begins to increase by middle age (10 months). The olfactory epithelium is an appropriate model for the ability of human APOE alleles to modulate age-dependent effects associated with the progression of AD.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mucosa Olfatória/patologia , Olfato/genética , Adulto , Alelos , Animais , Apolipoproteínas E , Encéfalo/patologia , Feminino , Genótipo , Humanos , Masculino , Camundongos
19.
Am J Pathol ; 192(3): 564-578, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954207

RESUMO

The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aß, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Demência , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Demência/genética , Demência/metabolismo , Demência/patologia , Detergentes , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...